Refine Your Search

Topic

null

Search Results

Technical Paper

A Study on Ion Current and OH Radical Luminescence Behavior in a Two-Stroke Engine

2000-01-15
2000-01-1424
In this research, an investigation was made of ion current and OH radical luminescence behavior in the progression from normal combustion to knocking operation. One pair each of an ion probe and a quartz observation window was fitted in the center and on the end of the combustion chamber. The peak values of the ion voltage drop and the OH radical emission intensity both increased as the cylinder head temperature and the cylinder pressure rose. It is possible to understand combustion conditions by analyzing measured waveformes of the ion voltage drop and the OH radical emission intensity.
Technical Paper

An Experimental Study Concerning the influence of Hot Residual Gas On Combustion

2000-01-15
2000-01-1419
This research focused on the light emission behavior of the OH radical (characteristic spectrum of 306.4 [nm]) that plays a key role in combustion reactions, in order to investigate the influence of the residual gas on autoignition. Authors also analyzed on the heat release and thermodynamic mean temperature due to research activity state of unburned gas. The test engine used was a 2-stroke, air-cooled engine fitted with an exhaust pressure control valve in the exhaust manifold. Raising the exhaust pressure forcibly recirculated more exhaust gas internally. When a certain level of internal EGR is forcibly applied, the temperature of the unburned end gas is raised on account of heat transfer from the hot residual gas and also due to compression by piston motion. As a result, the unburned end gas becomes active and autoignition tends to occur.
Technical Paper

Simultaneous Analysis of Light Absorption and Emission in Preflame Reactions under Knocking Operation

2000-01-15
2000-01-1416
The study deals with the light absorption and emission behavior in the preflame reaction interval before hot flame reactions.(1-3) Absorption spectroscopy was used to measure the behavior of HCHO and OH radicals during a progression from normal combustion to knocking operation. Emission spectroscopic measurements were obtained in the same way that radical added HCO. Radical behavior in preflame reactions was thus examined on the basis of simultaneous measurements, which combined each absorption wavelength with three emission wavelength by using a monochromator and a newly developed polychromator.(4-5) When n-heptane (0 RON) and blended fuel (50 RON) were used as test fuel, it was observed that radical behavior differed between normal combustion and knocking operation and a duration of the preflame reaction was shorter during the progression from normal combustion to a condition of knocking.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Propagation Processes of Newly Developed Plasma Jet Igniter

2000-06-12
2000-05-0014
In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had an annular circular orifice has been developed. The purpose of this study is to elucidate the relationship between the newly developed plasma jet igniter configuration and the combustion enhancement effects. In this newly developed plasma jet igniter, the fine scale turbulence appears on the flame front and flame propagates very rapidly. Plasma jet influences on the flame propagation for long period when the plasma jet igniter has issuing angle 90 [deg.] and large cavity volume. However, in the early stage of combustion, flame front area of issuing angle 45 [deg.] is larger than that of 90 [deg.], because the initial flame kernel is formed by the plasma jet.
Technical Paper

Performance of Newly Developed Plasma Jet Igniter

1999-09-28
1999-01-3327
The investigation regarding the performance of newly developed plasma jet igniter is explored by using vessel. In plasma jet ignition, combustion enhancement effects occur toward the plasma jet issuing direction. Therefore, when the igniter is attached at the center of cylindrically shaped combustion chamber, plasma jet should issue toward the round combustion chamber wall. The plasma jet igniter that had a concentric circular orifice has been developed. The maximum combustion pressure increases and the burning period decreases with increasing the cavity volume. This feature is similar to that of the ordinary plasma jet igniter. However, the combustion enhancement effect is almost independent of the orifice area.
Technical Paper

A Study of HCCI Combustion Assisted by a Streamer Discharge Based on Visualization of the Entire Bore Area

2014-11-11
2014-32-0001
This study investigated the effect of streamer discharge on autoignition and combustion in a Homogeneous Charge Compression Ignition (HCCI) engine. A continuous streamer discharge was generated in the center of the combustion chamber of a 2-stroke optically accessible engine that allowed visualization of the entire bore area. The experimental results showed that the flame was initiated and grew from the vicinity of the electrode under the application of a streamer discharge. Subsequently, rapid autoignition (HCCI combustion) occurred in the unburned mixture in the end zone, thus indicating that HCCI combustion was accomplished assisted by the streamer discharge. In other word, ignition timing of HCCI combustion was advanced after the streamer discharging process, and the initiation behavior of the combustion flame was made clear under that condition.
Technical Paper

Study of Supercharged Gasoline HCCI Combustion by Using Spectroscopic Measurements and FT-IR Exhaust Gas Analysis

2014-11-11
2014-32-0004
One issue of Homogeneous Charge Compression Ignition (HCCI) engines that should be addressed is to suppress rapid combustion in the high-load region. Supercharging the intake air so as to form a leaner mixture is one way of moderating HCCI combustion. However, the specific effect of supercharging on moderating HCCI combustion and the mechanism involved are not fully understood yet. Therefore, experiments were conducted in this study that were designed to moderate rapid combustion in a test HCCI engine by supercharging the air inducted into the cylinder. The engine was operated under high-load levels in a supercharged state in order to make clear the effect of supercharging on expanding the stable operating region in the high-load range. HCCI combustion was investigated under these conditions by making in-cylinder spectroscopic measurements and by analyzing the exhaust gas using Fourier transform infrared (FT-IR) spectroscopy.
Technical Paper

A Study of Supercharged HCCI Combustion Using Blended Fuels of Propane and DME

2014-11-11
2014-32-0005
Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion.
Technical Paper

Light Emission Behavior of Radicals during Preflame Reactions under Knocking Operation

2002-10-29
2002-32-1775
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition. Light emission intensity was measured at wavelengths of 306.4 nm (characteristic spectrum of OH), 329.8 nm (HCO), 395.2 nm (HCHO). A four-cycle, air-cooled, single-cylinder gasoline engine with a side valve arrangement was used as the test engine. Light emission behavior was simultaneously observed at two positions (the end zone and the center zone) in the combustion chamber. The test fuel used was n-heptane (0 RON). The test engine was operated at three speed levels (1400, 1800 and 2200 rpm). As a result, preflame reactions were observed. It was also observed that the tendencies seen for the preflame reaction interval varied depending on the engine speed.
Technical Paper

7 Experimental Research Concerning the Effect of the Scavenging Passage Length on the Combustion State and Exhaust Gas Composition of a Small Two-stroke Engine

2002-10-29
2002-32-1776
This paper presents the results of experiments conducted with a two-stroke engine that was the world's first such engine to comply with the emissions regulations applied to small off-road engines by the U.S. state of California in 2000. This engine is fitted with a scavenging passage that runs around the crankcase before the scavenging port. The aim of this research was to investigate how changes in the quantity of heat transferred to the fresh air as a result of varying the length of the scavenging passage would affect the state of combustion and exhaust gas composition. An ion probe was fitted to the end zone of the combustion chamber in order to detect the state of combustion. A voltage of 60 V was applied to the ion probe and measurements were made of the voltage drop that occurred due to the presence of high concentrations of ions (H3O+, C3H3+, CHO+, etc.) at the flame front.
Technical Paper

54 The Combustion Phenomena Under Corona Discharge Application

2002-10-29
2002-32-1823
In this study, the effect of corona discharge on the combustion phenomenon has been made clear. A homogeneous propane-air mixture was used and six equivalence ratios were tested. For generating the positive and negative corona discharge, a non-uniform electric field was applied to the combustion chamber by the needle to plane gap. One or five needle-shaped electrodes were used to change the corona discharge state. When the positive corona discharge was applied, the luminescence from corona with five electrodes was weak as compared with that of one needle-shaped electrode. When the negative corona discharge was applied, the luminescence from corona and combustion were not affected by the number of electrode. When the positive corona discharge was applied by low voltage, the combustion was improved in the case of one needle-shaped electrode, but the index of combustion with one needle-shaped electrode was almost equal to that of five electrodes when the high voltage was applied.
Technical Paper

The Effects of the Compression Ratio, Equivalence Ratio, and Intake Air Temperature on Ignition Timing in an HCCI Engine Using DME Fuel

2005-10-12
2005-32-0002
Attention has recently been focused on homogeneous charge compression ignition combustion (HCCI) as an effective combustion process for resolving the essential nature of combustion. Meanwhile, dimethylether (DME) has attracted interest as a potential alternative fuel for compression ignition engines. Authors measured the combustion process of DME HCCI by using a spectroscopic method. A diesel engine was used as the test engine. The results of these analyses showed that changes in the compression ratio, intake air temperature and equivalence ratio influenced the ignition timing in the HCCI combustion process. This paper discusses these effects in reference to the experimental and calculated results.
Technical Paper

The Influence of High Voltage Electrical Field on the Flame Propagation

2005-10-12
2005-32-0074
The purpose of this study is to elucidate the development process of hot kernel generated by the laser induced breakdown and to clarify the relationship between corona discharge application and flame propagation. The mixture can be ignited by the laser induced breakdown. Nd:YAG laser is used for the ignition and laser light is optically focused on the central part of combustion chamber by a plano convex lens. The hot kernel is observed in the absence of combustion and is rapidly developed into the laser incidence side. The homogeneous propane-air mixture is used and six equivalence ratios between 0.7 and 1.5 are tested. For generating the positive corona discharge in the combustion chamber, a non-uniform electric field is applied by the needle to plane gap. In a lean mixture, the whole flame front shifts to downward from the breakdown point and, in the rich mixture region, the combustion is strongly enhanced.
Technical Paper

Analysis of the Combustion Characteristics of a HCCI Engine Operating on DME and Methane

2007-10-30
2007-32-0041
The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest in recent years because it can simultaneously achieve high efficiency and low emissions. However, it is difficult to control the ignition timing with this type of engine because it has no physical ignition mechanism. Varying the amount of fuel supplied changes the operating load and the ignition timing also changes simultaneously. The HCCI combustion process also has the problem that combustion proceeds too rapidly. This study examined the possibility of separating ignition timing control and load control using an HCCI engine that was operated on blended test fuels of dimethyl ether (DME) and methane, which have vastly different ignition characteristics. The influence of the mixing ratios of these two test fuels on the rapidity of combustion was also investigated.
Technical Paper

Study of Diffusion Combustion by Using the High-Voltage Electrical Discharge

2007-10-30
2007-32-0035
A new combustion method which is using the characteristic of plasma jet ignition is proposed. This new combustion method has features of diffusive combustion, however the fuel is injected and ignited by the electrical discharge. In the procedure of plasma jet ignition, a high-voltage electrical discharge is generated from the electrode to the orifice and then the gas in the cavity is transformed to a plasma state. When the cavity is filled with liquid fuel, the fuel plasma jet spreads into combustion chamber and is mixed with air in combustion chamber, and then the diffusive combustion occurs. Tests are carried out with four kinds of fuel by using a constant volume vessel. All kinds of fuel are surely injected by the electrical discharge and are certainly ignited and burned by this combustion method. The diffusion flame development process is influenced by fuel properties and is affected by the orifice diameter size.
Technical Paper

A Spectroscopic Analysis of a Homogeneous Charge Compression Ignition Engine

2007-10-30
2007-32-0038
Homogeneous Charge Compression Ignition (HCCI) combustion offers the advantages of high efficiency and low emissions of pollutants. However, ignition timing control and expansion of the stable operation region are issues remaining to be addressed in this combustion process. Detailed analyses of ignition and combustion characteristics are needed to resolve these issues. HCCI combustion of a low octane number fuel is characterized by two-stage heat release attributed to a cool flame and a hot flame, respectively. In this study, spectroscopic techniques were used to investigate the effect of exhaust gas recirculation (EGR) on ignition and combustion characteristics using a low octane number fuel, which is apt to give rise to a cool flame. The reaction mechanism of a cool flame produces formaldehyde (HCHO). Measurements were made of spontaneous light emission and absorption at wavelengths corresponding to the light emitted at the time HCHO was produced.
Technical Paper

The Application of Coconut-oil Methyl Ester for Diesel Engine

2007-10-30
2007-32-0065
The coconut-oil methyl ester is made from coconut oil and methanol, and both cold start performance and ignition characteristics of coconut-oil methyl ester are experimentally investigated by using a diesel engine. In experiments, diesel fuel and coconut-oil methyl ester are used and the blended ratio of coconut-oil methyl ester to diesel fuel is changed. The test is conducted at full load and 3000 rpm. The diesel engine can be run stably with any mixing ratio of coconut-oil methyl ester, however the power is slightly reduced with increasing the mixing ratio of coconut-oil methyl ester. In the cold start condition, when the mixing ratio of coconut-oil methyl ester increases, the combustion chamber wall temperature rises early and the ignition timing is improved. Therefore, the coconut-oil methyl ester has superior compression ignition characteristics and reduces exhaust gas emissions, so that the coconut-oil methyl ester is good alternative fuel for diesel engines.
Technical Paper

Combustion Characteristic of Lean Mixture Ignited by Gas-Oil Injection in High Compression Engine

1997-10-27
978496
We have investigated combustion characteristics of lean gasoline-air pre-mixture ignited by gas-oil injection using a high compression D.I. diesel engine. Gasoline was supplied as an uniform lean mixture by using carburetors, and gas-oil was directly injected into the cylinder. Two different types of combustion chamber were attempted. It was confirmed that the lean mixture of air-fuel ratio between 150 and 35 could be ignited and burned by this ignition method. An engine with the re-entrant type combustion chamber had an advantage for combustion and ignition. The brake mean effective pressure increased when relatively rich mixture was provided with a small amount of the gas-oil injection. As the gas-oil injection increased, HC concentration decreased, and NO and CO concentration increased. The exhaust gas emission of pollutants could be reduced when lean mixture was ignited by an optimum gas-oil injection.
Technical Paper

Spectroscopic Measurement of OH Radical Emission Behavior Using a 2-Cycle Engine

1997-10-27
978515
The aim of this research was to investigate the mechanism causing autoignition and the effect of exhaust gas recirculation (EGR) on combustion by detecting the behavior of the OH radical and other excited molecules present in the flame in a spark ignition engine. The test equipment used was a 2-cycle engine equipped with a Schnürle scavenging system. Using emission spectroscopy, the behavior of the OH radical was measured at four locations in the end zone of the combustion chamber. The OH radical plays an important role in the elemental reactions of hydrocarbon fuels. When a certain level of EGR was applied according to the engine operating conditions, the unburned gas became active owing to heat transfer from residual gas near the measurement positions on the exhaust port side and the influence of excited species in the residual gas, and autoignition tended to occur.
X